SENSITIVITY AND UNCERTAINTY ANALYSES OF CROP YIELDS
AND SoiL OrcaNic CARBON SiMuLATED WITH EPIC

X. Wang, X.He, J. R. Williams, R. C. lzaurralde, J. D. Atwood

ABsTRACT. Modeling biophysical processes is a complex endeavor because of large data requirements and uncertainty in
model parameters. Model predictions should incorporate, when possible, analyses of their uncertainty and sensitivity. The
study incorporated uncertainty analysis on EPIC (Environmental Policy Impact Calculator) predictions of corn (Zea mays
L.) yield and soil organic carbon (SOC) using generalized likelihood uncertainty estimation (GLUE). An automatic parameter
optimization procedure was developed at the conclusion of sensitivity analysis, which was conducted using the extended
Fourier amplitude sensitivity test (FAST). The analyses were based on an experimental field under 34-year continuous corn
with five N treatments at the Arlington Agricultural Research Station in Wisconsin. The observed average annual yields per
treatment during 1958 to 1991 fell well within the 90% confidence interval (CI) of the annually averaged predictions. The
width of the 90% CI bands of predicted average yields ranged from 0.31 to 1.6 Mg ha~L. The predicted means per treatment
over simulations were 3.26 to 6.37 Mg ha™2, with observations from 3.28 to 6.4 Mg ha=. The predicted means of yearly yield
over simulations were 1.77 to 9.22 Mg ha™2, with observations from 1.35 to 10.22 Mg ha=L. The 90% confidence width for
predicted yearly SOC in the top 0.2 m soil was 285 to 625 g C m~2, while predicted means were 5122 to 6564 g C m=2 and
observations were 5645 to 6733 g C m~2. The optimal parameter set identified through the automatic parameter optimization
procedure gave an R2 of 0.96 for average corn yield predictions and 0.89 for yearly SOC. EPIC was dependable, from a
statistical point of view, in predicting average yield and SOC dynamics.

Keywords. Corn yield, EPIC model, GLUE procedure, Parameter optimization, Sensitivity analysis, Uncertainty analysis.

omputer-based agronomic models are simplified

representations of physical processes. The applica-

tion of models generally involves large data re-

quirements. Some of the input data and model
parameters are not known with certainty, since they are often
difficult to determine accurately due to the inherent variabili-
ty in natural processes, costly monitoring, or imperfections
in data measurements. Therefore, model predictions are not
the absolute answers, and in most cases it may be preferable
to give confidence interval estimates (Haan, 2002) rather
than singular outputs due to uncertainties in both model struc-
ture and input values. It has been realized that identifying the
probabilities of outputs with a quantitative uncertainty analy-
sis and evaluating their likelihood can provide decision/
policy makers with more valuable information to make or
evaluate decisions (Haan and Skaggs, 2003a; Ogle et al.,
2003). Sensitivity analyses can help in inspecting the main
sources of model prediction uncertainty. It helps identify the
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critical control points, prioritize additional data collection or
necessary research, and select calibration parameters. There-
fore, good modeling practice requires the incorporation of
uncertainty and sensitivity analyses (Haan et al., 1998; Hes-
sion et al., 1996; Reckhow, 1994).

Several methodologies have been used to account for
uncertainty, such as Kalman filtering (Peter, 1979; Ahsam
and O’Connor, 1994), first-order analysis (FOA) (Chaubey et
al., 1999; Haan and Skaggs, 2003a, 2003b), Monte Carlo
simulation (MCS) (Hession et al., 1996; Haan and Skaggs,
2003a, 2003b; Ogle et al., 2003), Latin hypercube sampling
(LHS) (Pebesma and Heuvelink, 1999), and generalized
likelihood uncertainty estimation (GLUE) (Beven and
Binley, 1992; Beven, 1993). Among these methods, GLUE
is a more comprehensive uncertainty analysis methodology
based on MCS, likelihood measures, and the concept of
Bayesian inference. It requires no assumptions of linearity,
Gaussian approximation, or parameter independence. Pa-
rameter interactions and non-linearity in the model responses
are handled implicitly in the GLUE methodology since the
likelihood measure for each model realization is associated
with a particular set of parameters rather than individual
parameter values (Beven and Freer, 2001).

Sensitivity analysis methods can be classified as:
(1) graphical methods, such as “visual” sensitivity analysis
(Romanowicz et al., 1994); (2) mathematical methods; and
(3) statistical methods, such as analysis of variance (ANO-
VA), response surface methods (RSM), and Fourier ampli-
tude sensitivity test (FAST). Graphical methods can be used
as a screening method before further analysis to give visual
indication of how an output is affected by variation in inputs.
Mathematical methods typically involve calculating the
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output for a few values of an input. These methods do not
address the variance in the output due to the variance in the
inputs. Statistical methods involve running simulations using
inputs with given distributions and assessing the effect of
variance in inputs on the outputs distribution (Andersson et
al., 2000). These methods allow researchers to identify the
effect of interactions among multiple inputs that vary
simultaneously.

After sensitivity analysis, it would be worthwhile to get
more information about the most influential parameters. It is
common practice to calibrate those parameters to give the
optimal fit to observations. Borah and Haan (1991) and
Thorsen et al. (2001) stated that errors could be introduced
into models during the calibration process due to imperfect
data used for calibration, the chosen objective function and
fitting criterion, and interaction of parameters. The calibra-
tion process can be done either manually, using a trial and
error process of parameter adjustments, or by using comput-
er-based automatic procedures. Madsen (2000) stated that it
is possible for an experienced hydrologist to obtain very good
and hydrologically sound parameters using manual calibra-
tion, but manual calibration is tedious, time-consuming,
subjective, and cannot easily include consideration of the
interaction among parameters. In computer-based automatic
calibration, parameters can either be adjusted automatically
through a specified optimization search algorithm or identi-
fied automatically among Monte Carlo simulations. Auto-
matic calibration procedures have focused mainly on using
a single overall objective function. However, a single
performance measure is often inadequate to measure proper-
ly the simulation of all the important characteristics of the
system that are reflected in the observations. This was what
caused skepticism in the hydrological profession for apply-
ing automatic calibration procedures (Madsen, 2000). Re-
cently, multi-objective function techniques have been
applied in automatic calibration routines for rainfall-runoff
modeling (Refsgaard, 1997; Madsen and Kristensen, 2002;
Madsen, 2000; Gupta et al., 1998; Yapo et al., 1996).

The Environmental Policy Impact Calculator (EPIC)
(Williams and Sharpley, 1989) is a continuous, field-scale
agricultural management/water quality model. The major
model components in EPIC are weather simulation, hydrolo-
gy, erosion/sedimentation, nutrient cycling, pesticide fate,
soil temperature, plant growth, tillage, and plant environ-
mental control. It also calculates the cost associated with
each modeled management practice. The model includes
parameter data files for major crops, soils, fertilizers, and
tillage practices. The most recent version, v3060, incorpo-
rates carbon and nitrogen algorithms to estimate soil carbon
sequestration as affected by climatic conditions, soil proper-
ties, and management practices (lzaurralde et al., 2001a).
Soil carbon sequestration is one technique with near-term
potential for attenuating the rapid observed increase in
atmospheric CO» (lzaurralde et al., 2001b). Models such as
EPIC are being increasingly used to estimate soil carbon
sequestration rates and overall potential at field and regional
scales. The use of such models allows decisions to be made
as to whether a particular management practice can result in
soil carbon sequestration and whether the application of such
practice is useful and cost effective, when field data,
especially the necessary long-term data, are both difficult and
expensive to obtain. While models could be well calibrated
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and perform adequately under many conditions, there is still
uncertainty about the values of many of their parameters,
which could add to the overall uncertainty in the outputs. In
the case of EPIC, although it has been extensively tested and
applied throughout the U.S. and many other countries (King
et al., 1996; Pierson et al., 2001; Chung et al., 2002;
Bernardos et al., 2001; Potter et al., 1998; Brown and
Rosenberg, 1999; Rinaldi, 2001; Apezteguia et al., 2002), to
the best of our knowledge, no similar attempts have been
reported to quantify the uncertainty aspects of its predictions.

The objectives of this study were: (1) to incorporate
uncertainty analysis on EPIC v3060 predictions of crop yield
and SOC using the GLUE procedure, (2) to conduct
sensitivity analysis using the extended FAST to identify the
main sources of uncertainty in the EPIC predictions, and
(3) to develop an automatic parameter optimization proce-
dure to provide optimal parameter estimates for a study site.

MATERIALS AND METHODS
DESCRIPTION OF THE STUDY SITE

The weather, soil, and management data used in this study
were from a long-term experiment conducted at the Universi-
ty of Wisconsin Arlington Agricultural Research Station in
south central Wisconsin (43° 18" N, 89° 21’ W) (Vanotti et al.,
1997). The long-term study was established in 1958 with the
purpose of evaluating the response of continuous corn (Zea
mays L.) to N fertilization treatments. The study site lies on
an extended plain with 1% to 2% slope in a Plano silt loam
soil (fine-silty, mixed, mesic, Typic Argiudoll) under a humid
continental climate with mean annual precipitation 791 mm
and mean daily temperature 7.6°C. The responses of
continuous corn to N fertilization were evaluated using a
randomized complete block design with three levels of N.
The block was divided into three plots (60 X 12 m) based on
N fertilization rates at 0, 56, 112 kg N ha™! from 1958 to 1962;
at 0, 92, 184 kg N ha~1 from 1963 to 1972; and at 0, 140, 280
kg N ha~1 from 1973 to 1983 (table 1) (Vanotti et al., 1997).
In 1984, each of the non-control plots was split into two
subplots to study the residual effects of previous N treat-
ments. In 1985, each subplot was further subdivided into two
to evaluate the lime effects on corn yield. Because the liming
period is short, only the five treatments without liming were
used in this study. Fertilization rates were reduced to 0, 84,
and 168 kg N ha1 from 1984 till 1991 (table 1). Fertilizer N
was applied about 10 days prior to planting. N was also
applied to all plots as starter fertilizer during planting. The
starter fertilizer was drilled 5 cm below and 5 cm to the side
of the seed at the rates of 8 kg N ha™! for treatment 1, 15 kg
N ha=! for treatments 3 and 7, and 21 kg N ha™! for treat-
ments 5 and 9 from 1958 to 1962, and then 13 kg N ha™1 for
all plots since 1963. A detailed description of the study site
can be found in Vanotti et al. (1997).

Corn yields were measured at 15.5% moisture content
during 1958-1962 and 1968-1991. Corn yields of 1963-1967
were not collected but were patched based on yields in
1958-1962 and 1968-1983 (M. B. Vanotti, personal commu-
nication). For this analysis, corn yields are expressed on a dry
basis. SOC content in the top 0.2 m was measured in the
initial year 1958, and then in 1984 and 1990. The SOC data
of 1984 and 1990 were used to evaluate the model perfor-
mance in simulating SOC dynamics.
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Table 1. N fertilization treatments.

N Fertilization Rate (kg N ha™1)

Year Fertilizer Treatment 1[2] Treatment 3 Treatment 7 Treatment 5 Treatment 9
1958-1962 Ammonium nitrate 0 56 112
1963-1972 Anhydrous ammonia 0 92 184
1973-1983 Anhydrous ammonia 0 140 280
1984-1991 Urea 0 0 84 0 168

[e] Control plot.

DescripTION OF EPIC AND INPUT DATA

EPIC was originally developed in the early 1980s to
simulate the impacts of soil erosion on soil productivity in the
U.S. (Williams et al., 1984, Williams, 1995). It has since
evolved into a comprehensive agro-ecosystem model to
include the major soil and water processes related to crop
growth and environmental effects of farming activities, and
it continues to be modified and refined. More recent versions
of this model include the improved carbon and nitrogen
algorithms to estimate soil carbon sequestration (lzaurralde
et al., 2001a) based on concepts and equations from the
Century model as described by Parton et al. (1987, 1994) and
Gassman et al. (2004).

The major components in EPIC are weather simulation,
hydrology, erosion-sedimentation, nutrient cycling, pesti-
cide fate, plant growth, soil temperature, tillage, economics,
and plant environment control (Williams, 1995). It is a
field-scale model that simulates processes extending only to
the bottom of the root zone and edge of the field. EPIC
operates on a daily time step. The number of output variables
is large. The concerns in this study were crop yield and SOC
predictions.

The plant growth model in EPIC is capable of simulating
agronomic crops, pastures, and trees, with each crop having
unique values for the model parameters, e.g., harvest index
(HI), potential heat units (PHU), and maximum leaf area
index (LAI). Plant growth is simulated with a heat unit
system that correlates plant growth with temperature.
Potential crop growth and yield are usually not achieved
because of constraints imposed by the plant environment,
such as water, nutrient, temperature, or aeration stresses. The
root growth constraint is the minimum of soil strength,
temperature, and aluminum toxicity. Crop yield may be
reduced through water-stress-induced reductions in the
harvest index.

Nutrient cycles are modeled in EPIC for fractions of
carbon (C), nitrogen (N), and phosphorus (P). The fractions
are subdivided into pools. Transformations between the
different pools are calculated on a daily time step through a
series of coupled equations that are solved within a mass
balance framework. These equations are closely tied to other
model components, including the hydrology component,
which controls most of the transport processes, and the plant
growth component, which handles nutrient uptake. As in the
Century model, C and N compounds in EPIC are allocated to
biomass, slow, and passive pools. Detailed descriptions of the
EPIC components and the mathematic relationships used to
simulate the processes can be found in Williams (1995).
More detailed information on historical EPIC development
can be found in Gassman et al. (2004).

EPIC requires the user to input weather, soil, field
management, and site information. The daily on-site weather
data (precipitation, maximum and minimum temperature,
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solar radiation, relative humidity, and wind speed) were
measured for the 34-year (1958-1991) study period. The
historical daily weather data were directly used in the EPIC
simulation. The soil profile was divided into five layers.
EPIC requires layer depth, bulk density (BD), wilting point
(WP), field capacity (FC), percentage sand and silt, pH, and
percentage organic C. Table 2 lists the layer data for the
1.83 m Plano silt loam soil. The data were primarily based on
measured values in 1958. Soil bulk density inputs for the
upper 0.36 m were mean values measured at depth intervals
0f 0.0 to 0.2 m and 0.2 to 0.3 m. Soil water contents at field
capacity and wilting point were 0.33 and 0.18 m m~1 for the
0.0 to 0.3 m depth, 0.34 and 0.2 m m~1 for the 0.3 to 0.6 m
depth, and 0.35 and 0.22 m m~1 for the 0.6 to 0.9 m depth. Soil
pH was 6.75 for the upper 0.36 m, and the percentage soil
organic C was 1.88% measured in the top 0.2 m. The
remaining soil layer properties were determined based on the
Plano soil data retrieved from Soil Survey Geographic
(SSURGO) database.

The field management is summarized in table 3. All five
treatments had the exactly same tillage operations and
planting/harvesting dates. N fertilization rates were the only
difference. Fertilizer N was applied 10 days prior to planting
in 26 out of 34 years. In other years, N was applied about
10 days prior to planting. N was also applied as starter
fertilizer during planting. Corn was planted every year,
usually between the 1st and 4th weeks of May and usually
harvested in the 4th week of October. Crop residues were
plowed into the soil the following spring. Other required
parameters, such as crop parameters, fertilizer parameters,
tillage operation parameters, and other miscellaneous param-
eters, were set to standard values contained in EPIC
parameter data files, except for the parameters chosen for
uncertainty analysis listed in table 4 (see the following
section). Several methods can be used to estimate runoff and
potential evapotranspiration in EPIC. For this study, runoff
was estimated using the USDA-SCS runoff curve number
method (Mockus, 1972) with modifications incorporated for
slope and soil profile water distribution effects as described
by Williams (1995), and potential evapotranspiration using
the Penman-Monteith method (Monteith, 1965).

Table 2. Properties by layer for the Plano silt loam soil.

Soil Layer

Property 1 2 3 4 5

Depth (m) 0.20 0.36 1.24 1.52 1.83
BD (Mg m3) 1.47 1.49 1.49 1.55 1.53
WP (m m1) 0.18 0.18 0.21 0.14 0.09
FC (mm) 0.33 0.33 0.35 0.30 0.27
Sand (%) 9.5 9.5 6.9 32.9 14.0
Silt (%) 68.0 68.0 63.1 43.6 71.0
Soil pH 6.75 6.75 6.20 6.45 7.00
Organic C (%) 1.88 1.70 0.35 0.17 0.17
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Table 3. Summary of management activities
for the 34-year study period (1958-1991).

Date Management Activity
9 April - 14 April Tillage
About 10 days before corn planting Fertilizer application
22 April - 29 May Tillage

24 April - 31 May Corn planting, and starter

fertilizer application

2 October - 25 October Corn harvest

UNCERTAINTY AND SENSITIVITY ANALYSES

PROCEDURE FOR EVALUATING EPIC
PARAMETER SELECTION

The uncertainty and sensitivity analyses were performed
for two EPIC components: crop growth and SOC. In theory,
the components contain a large number of input parameters.
Ideally, all parameters should be treated stochastically and
included in uncertainty analysis; however, this would result
in an unrealistically high number of simulations, and the
related computational load might be impractical (Thorsen et
al., 2001). Therefore, the input uncertainty was limited to six
yield-related and three SOC-related key parameters (table 4),
which were selected by experience (J. R. Williams and T. J.
Gerik, personal communication) to be known as the key
parameters in the processes governing the plant growth and
carbon dynamics. Recognizing uncertainty from only a few
parameters is a more practical and typical manner in which
to conduct uncertainty analysis; for instance, five parameters
were chosen for uncertainty assessment in the coupled MIKE
SHE/DAISY modeling system in Thorsen et al. (2001), and
four parameters were chosen for uncertainty estimation in the
IHDM (Institute of Hydrology Distributed Model) modeling
in Beven and Binley (1992).

The biomass to energy ratio (WA) is the crop parameter for
converting solar energy into biomass. The harvest index (HI)
is the ratio of economic yield to the above-ground biomass.
The potential heat units (PHU) is the number of heat units
expected for a typical growing season (from planting date to
harvest date) for the crop to mature. Heat units are
accumulated degrees of temperature (°C) between the day’s
mean temperature and the crop’s minimum growth tempera-
ture. The water stress-harvest index, PARM(3), sets the

fraction of growing season when water stress starts to reduce
the HI. The SCS curve number index coefficient, PARM(42),
regulates the effect of potential evapotranspiration in driving
the SCS curve number retention parameter. The retention
parameter impacts runoff volume and changes with soil water
content. The differences of soil water contents for each layer
between field capacity and wilting point (DIFFW) impact
water storage for plant use and water stress factor for crop
growth. FBM is the fraction of organic C present as microbial
biomass (active pool) at the initiation of the study. The
fraction of humus in the passive C pool (FHP) is also set at
the beginning of the simulation. These two thus define the
distribution of the soil C pools (i.e., active or microbial, slow,
and passive). The microbial decay rate -coefficient,
PARM(20), impacts C mineralization.

The triangular distribution was assumed for all the nine
selected parameters based on expert judgment (J. R. Williams,
personal communication), due to the following reasons: (1) it is
difficult to determine the actual form of the probability
distribution function (PDF) since it is generally not possible to
collect a large, random sample to test various PDFs for their
ability to describe the uncertainty in parameters (Haan et al.,
1998; Beven and Binley, 1992); (2) knowledge of the means
and variances of the input parameters is far more important than
knowledge of the exact PDFs based on the study conducted by
Haan et al. (1998); and (3) the generalized likelihood uncertain-
ty estimation (GLUE) (Beven and Binley, 1992; Beven, 1993)
was used for uncertainty analysis in this study. In the GLUE
procedure, model responses are compared with observations
and each parameter set is weighted via the likelihood measures;
the new distribution should dominate the prior distribution when
uncertainty estimates are calculated based on the likelihood
weights (Beven and Binley, 1992). The means of WA and HI
were taken from the default crop parameter values for corn. The
means of DIFFW were based on the analysis of available data.
The means of PARM(3) and PARM(42) were the values
recommended for EPIC v3060 in the model documentation
(www.public.iastate.edu/~elvis/i_epic_table_parameters.html).
The means of the other parameters were based on expert
knowledge (J. R. Williams, personal communication). The
ranges for the nine selected parameters were based partly on the
literature and partly on expert knowledge, as listed in table 4.
Bouman (1994) stated that the ranges of the parameter values
should be as broad as possible, as long as they are not beyond

Table 4. EPIC parameters used for uncertainty and sensitivity analysis.

Triangular Distribution

Parameter Symbol Mean Range Source of Range
Yield related
Biomass-energy ratio (kg hat MJ~1 m2) WA 40 30-45 Sinclair and Muchow (1999) and
Gerik (personal communication)
Harvest index HI 0.5 0.45 - 0.60 Kiniry et al. (1997) and
Gerik (personal communication)
Potential heat units (°C) PHU 1500 1200 - 2400 Gerik (personal communication)
Water stress-harvest index PARM(3) 0.5 0.3-0.7 Williams (personal communication)
SCS curve number index coefficient PARM(42) 15 05-2 Williams (personal communication)
Difference of soil water contents at field DIFFW 0.13 0.05-0.2 Morgan et al. (2003) and
capacity and wilting point (m m1) Williams (personal communication)
Soil organic C related
Fraction of organic carbon in microbial FBM 0.04 0.005 - 0.06 Williams (personal communication)
biomass pool
Fraction of humus in passive pool FHP 0.7 0.3-0.9 Williams (personal communication)
Microbial decay rate coefficient PARM(20) 0.1 0.05-15 Williams (personal communication)
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the validity domain of the model. Although the determination
of the actual form of the distributions, means, and ranges to
assign to the selected input parameters seems rather subjec-
tive, it was hard to find a better way of doing this in the case
of lacking data.

UNCERTAINTY ANALYSIS

The GLUE procedure was used for uncertainty analysis.
A thorough description of the GLUE procedure can be found
in Beven and Binley (1992) and Beven (1993). The procedure
is based on making a large number of simulations of a given
model with different sets of parameter values, chosen
randomly from specified distributions. Based on comparing
the predicted and observed values for each simulation, each
set of parameter values was assigned a likelihood indicating
the goodness of fit of model performance. Among the
different possible likelihood measures (Beven and Binley,
1992; Romanowicz et al., 2000; Ratto et al., 2001), the
following was used in this study for calculating the likelihood
(L) of the model run corresponding to the ith set of parameters

(65):
L®;10)= EXF{—

ﬂ) (=123 ..N) (1)
min(MSE)

where O is the observation vector (O1, O, ..., O7), N is the
total number of simulations, MSE; is the mean squared error
for the ith model run, and min(MSE) is the minimum MSE
among the N simulations corresponding to the N sets of pa-
rameters. MSE; was calculated as:

15 2
t=1

where T is the number of time points for which observations
are available, and P; and Oy are the predicted and observed
values for the same time point t, respectively. The likelihood
measures were weighted using:

Ly 6)=—Ci19) ()
%L(ei |0)

where Ly (6;) is the likelihood weight for the ith set of parame-
ters (6;). The rescaled likelihood measures have a sum of 1:

%Lw(ei )=1 4)
i=1

which yields a relative probability of acceptability scale for
the parameter sets. The uncertainty estimation was per-
formed by calculating the model output cumulative distribu-
tion together with prediction quantiles based on the
likelihood weights. Assuming that the confidence intervals
(CI) are symmetrical with respect to probability, the 90% CI
can be found by reading the 5% and 95% quantiles from the
empirical cumulative probability plot (Haan and Skaggs,
2003a). The use of a likelihood weight allows conditioning
of the model output to observations, without changing the
sample and without making further model runs. A limitation
of the procedure is that the observations used to compare with
the predictions are assumed to be correct.
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The applied sampling strategy for the GLUE analysis in
this study was designed also for the computation of
variance-based sensitivity indices; therefore, by applying the
same set of model runs, predictive uncertainty was estimated,
and sensitivity indices were calculated, too. For this purpose,
a Sobol sample (Sobol, 1993) or the extended Fourier
amplitude sensitivity test (FAST) sample (Saltelli et al.,
1999) should be used. The extended FAST sample was used
in this study since it has the advantage of a small sample size
in comparison to the method of Sobol (Schwieger, 2004;
Saltelli et al., 1999). Since the GLUE procedure considers
that each model realization is associated with a particular set
of parameters rather than individual parameter values, in
order to reduce the noise from unrelated parameters for
specific model component, the yield-related and SOC-re-
lated parameter sets were generated separately while running
the model with the unrelated parameter values fixed using
base values. The base values are the parameter means given
in table 4, except FBM using the observed 0.01 and FHP
using the default 0, which sets the model to calculate it
automatically according to the number of years that the soil
is under cultivation. A total of 1,500 parameter sets were
generated for each of the two components using the public
domain SIMLAB software (2003) from the given ranges and
distribution specified in table 4. SIMLAB provides an
interface for sample generation designed for uncertainty and
sensitivity analyses of model outputs. The extended FAST
sampling method designed for all total and first-order effect
calculation was used. The EPIC source code was modified for
parameter update using the generated parameter sets. For
each of the generated parameter sets, the EPIC model was run
continuously for all years (1958-1991). The EPIC runs were
then evaluated using likelihood measure (eg. 1) and weighted
using equation 3 in GLUEWIN (2003), a Windows program
designed for uncertainty analysis using the GLUE procedure
(Ratto and Saltelli, 2001). The likelihood weights were used
as the basis for the uncertainty analysis. Predicted mean
values over the 1,500 runs, variances, probability distribu-
tions, cumulative density distributions, together with 90%
Cls were used to characterize prediction uncertainty.

VARIANCE-BASED SENSITIVITY ANALYSIS

A complete and detailed description of variance-based
sensitivity analysis can be found in Saltelli et al. (2000).
Variance-based sensitivity analysis is based on generated
samples. After the model executions using the generated
samples, the output variance is analyzed, and the sensitivity
analysis is based on analyzing the output variance in relation
to the variation of the input quantities (Schwieger, 2004).

The first-order sensitivity index (Sj) represents the
sensitivity of prediction (P) or likelihood weight (L) to
singular parameter (X;) (Schwieger, 2004; Ratto et al., 2001),
given by:

5, (P)= V(E(Pvl E;i)= X))

()

V(E(Ly | Xi =%)
ViLy)
where V(P) is the total variance of predictions; V(Ly) is the
total variance of likelihood weights; V (E(P | X = xi*)) is the

SiGﬂN):

(6)
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conditional variance of E(P | X; = xi*) , which is the expecta-
tion of P conditional on X; known and having a fixed value

xi*; and V(E(Ly | Xj = xi*)) is the conditional variance of
E(Ly | Xj = xi*) , Which is the expectation of L, conditional

on X; known and having a fixed value xi*.
If the expectation value E varies considerably with the

selection of a particular value xi* for X, while all the effects

of the X; values (j ;ti) are being averaged, then surely
parameter X; is an influential one (Schwieger, 2004). The
expectation value E above the whole variation interval of the
input quantity X; has to be evaluated to get a global sensitivity
measure.

The computation of all higher-order terms requires high
computational costs. An efficient alternative is to compute
the total sensitivity index (Stj) with respect to an input
quantity X; based on all effects involving X;. The total
sensitivity index represents the overall impact of parameter
X; on prediction (P) or likelihood weight (L), whether the
effects are additive or not, given by:

oy EV(PI X =x5)
ST| (P)— ¥ (P) (7)
S (L )= =P EEN =) ®
where X.j indicates all the parameters except X,

EV(P|X.= xfi)) is the average prediction variance con-
ditional on all input quantities (X-;) apart from X; holding
fixed as values xfi and X; remaining variable (Schwieger,

2004), and E(V(Ly | X~j = xfi)) is the average likelihood
weight variance.

Special sampling schemes are required to estimate the pair
(Si, Sti) (Saltelli et al., 2000; Schwieger, 2004). The extended
FAST (Saltelli et al., 1999) was used in this study. The
method is based on Fourier transformation of uncertain
model input parameters into a frequency domain, which
converts a multidimensional integral over all the uncertain
parameters to a one-dimensional integral, and constructs a
search curve to scan the entire parameter space (Saltelli et al.,
1999). A thorough description of the extended FAST
sampling procedure and the efficient estimators are provided
in Saltelli et al. (1999). The SIMLAB software was used to
conduct the FAST sensitivity analyses based only on the
model predictions (without comparing to observed values)
(egs. 5 and 7) and based on likelihood weight (egs. 6 and 8).

AUTOMATIC PARAMETER OPTIMIZATION PROCEDURE

An automatic parameter optimization procedure was
developed using a multi-objective function at the conclusion
of the sensitivity analysis following these steps:

1. A number of 1,500 random parameter sets were gener-
ated for the most influential and uncertain parameters
from the given ranges and distributions (table 4). Prab-
hu (1995) determined that at least 1,500 model runs
must be done for representative results.

2. EPIC was run by updating parameter values using the
randomly generated parameter sets.
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3. Each of the 1,500 EPIC runs were evaluated for both
corn yield and SOC using the following aggregated
function (F;), which combines two objective functions
into one with a weight of 0.5 for each objective func-
tion:

F = [0.5>< L@, | Vield ¥ +05x L(; | SOC)2:| —

where L(6; |Yield) and L(6; | Soc)are the likelihood
values calculated using equation 1 for corn yield and
SOC, respectively, of the EPIC run corresponding to
the ith set of parameters (6;).

4. The largest Fj among the 1,500 F; was identified auto-
matically. The corresponding ith set parameter values
was identified as the parameter estimations for the site.

RESuLTS AND DiscussioN
UNCERTAINTY ANALYSIS

The distributions of the predicted average annual corn
yields per treatment over the 34-year study period appeared
approximately normal (fig. 1). The 90% CI estimated from
the 5% and 95% quantiles of the cumulative distribution (fig.
2) was used as the uncertainty limits of predictions (Haan and
Skaggs, 2003a; Beven and Binley, 1992; Sabbagh and Fox,
1999). Observed values fell well within the 5% and 95%
confidence limits (fig. 2). The width of the 90% CI bands
ranged from 0.31 to 1.6 Mg ha™® (fig. 2), while predicted
means over the 1,500 simulations for the average annual
yield per treatment ranged from 3.26 to 6.37 Mg ha™1, with
observations ranging from 3.28 to 6.4 Mg ha™1 for the five
treatments (table 5). EPIC performed successfully in predict-
ing the effects of different N application rates on the
long-term average annual corn yields, as indicated by the low
mean errors ranging from —0.6% to 2.6% for the five N
treatments (table 5). For each treatment, the coefficient of
variation (CV) of the predicted means from the 1,500 simula-
tions using the given ranges and distribution of the six
yield-related parameters (table 4) was under 10%. The close
agreement between observations and the predicted means,
which can be used as a measure of the model behavior (Beven
and Binley, 1992), together with relatively low CV of the
predictions, indicate that EPIC was dependable and accurate
in predicting the average annual corn yields.

Figure 3 shows the observed and simulated 5% and 95%
confidence limits of the yearly corn yields for the study
period for treatment 3 as an example. Most of the observed
yearly yields of the five treatments fell within the 5% and
95% confidence limits of the predictions. The width of the
90% confidence interval bands ranged from 0.44 to 5.25 Mg
ha=l. The predicted means of yearly yields over the
1,500 simulations ranged from 1.77 to 9.22 Mg ha~1, with
observed yearly corn yields ranging from 1.35 to 10.22 Mg
ha=! for the five treatments. The confidence bound estima-
tion was obtained by calculating the model output cumula-
tive distribution based on the likelihood weights of the
1,500 simulations, which considered only the uncertainties
in the six crop-related parameters (table 4). The uncertainties
in other parameters, input data, observations, and the model
structure were not examined.
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Figure 1. Probability distribution of predicted average annual corn yield over 1958-1991 for the five treatments.
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Figure 2. Cumulative distribution of predicted average annual corn yield (1958-1991) for the five treatments. The 5% and 95% quantiles are shown
as dots; the mean of predictions over the 1,500 simulations is identified by a vertical solid line, while the corresponding observation is shown as a vertical

dashed line.

The width of the 90% CI band of SOC in the top 0.2 m soil
ranged from 285 to 625 g C m~2. The predicted means of SOC
for 1984 and 1990 per treatment over the 1,500 simulations
ranged from 5122 to 6564 g C m~2, and observations ranged
from 5645 to 6733 g C m=2, with the errors ranging from
-9.3% to 3.3% (fig. 4). The observed SOC fell within the 5%
and 95% confidence limits, except for the control treatment
for both years and treatment 7 in 1990. The observed SOC in
the control treatment increased from the initial year due to the
return of corn residues and the low levels of initial soil
organic matter as a result of prior poor management (Vanotti
et al., 1997). The model simulated a decrease in SOC in the
control plot. This suggests that the model might underesti-
mate the C and N return from corn residues. It is hard to
explain the poor simulation for treatment 7 in 1990. It had the
highest observed SOC (fig. 4 and table 8), which is different
from the observed trend where SOC decreased from 1984 to

Table 5. Mean and standard deviation of simulated average
annual corn yields (1958-1991) from the 1,500 simulations.

Measured Simulated

Annual Mean
Mean Mean SD Cv Error

Treatment  (Mghal) (Mghal) (Mgha) (%) (%)
1 3.28 3.26 0.10 3.1 -0.6

3 5.54 5.69 0.33 5.8 2.6

5 5.85 5.99 0.39 6.5 2.3

7 6.17 6.22 0.43 6.9 0.8

9 6.40 6.37 0.48 7.5 -0.5

Vol. 48(3): 1041-1054

1990 for all other treatments due to the effect of reduced N
inputs in the six years. Moreover, the N fertilization rates for
treatment 9 doubled those of treatment 7 for the entire experi-
ment period, and N fertilization rate was the only difference
in field operation and management. Thus, treatment 7 should
not be the one with the highest SOC. Observation error is a
possibility.

SENSITIVITY ANALYSIS

Scatter plots for the likelihood weights (using eq. 3) for
treatment 7 corn yield predictions versus each parameter are
shown in figure 5 as an example. Scatter plots for other
treatments (not shown) had similar appearances. The non-
linear shape of the scatter plots points to significant
interactions among parameters. High likelihood values are
distributed throughout the parameter spaces investigated. A
relatively clear pattern can be identified for WA, HI, PHU,
and DIFFW (fig. 5). The likelihood values significantly
decrease when WA and HI increase towards the upper end of
the parameter ranges, and significantly decrease when PHU
and DIFFW decrease towards the lower end of the parameter
ranges. No clear trend can be seen for PARM(3) and
PARM(42).

The FAST sensitivity indices for sensitivity quantitative
analysis based on yearly corn yields are presented in figures 6
and 7 for treatment 7 as examples. Figure 6 gives the FAST
first order (singular influence of the parameter) and total
order (all effects involving the parameter) sensitivity indices
for chosen time series. Figure 7 gives the average sensitivity
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Figure 3. Simulated 5% and 95% confidence limits of yearly corn yield for treatment 3 and corresponding observations.
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Figure 6. Sensitivity indices for yearly corn yield for treatment 7.

indices for the entire time series of 34 years. By considering
the difference between the total effect sensitivity indices and
the first-order sensitivity indices, a very slight increase is de-
tected. This implies that few interactions are revealed by the
analysis of the physical output, which singles out the impor-
tance of DIFFW, WA, and PHU, followed by HI.

Very high total sensitivity indices of corn yields were
detected based on likelihood weights for all parameters
investigated (fig. 8). This suggests that the good agreements
between model predictions and observations are not driven
by a particular parameter but by interactions among parame-
ters. The increase in total-order over first-order sensitivity
indices was greater when sensitivity analysis was based on
likelihood values than when sensitivity analysis was based on
model output alone. This reveals an advantage of using the

likelihood weights, in that the effect of parameter interaction
was more evident.

High total sensitivity indices of the three parameters for
the EPIC SOC component based on likelihood weight were
detected for all three parameters investigated (table 6 and
fig. 9). Only FBM was not influential based on model output
alone. Again, the increase in total-order over first-order
sensitivity indices was greater when sensitivity analysis was
based on likelihood weights than when sensitivity analysis
was based on model output alone.

PARAMETER ESTIMATION

For the EPIC crop growth component, the influential
parameters are soil water capacity (DIFFW), potential heat
units (PHU), biomass-energy ratio (WA), and harvest index
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Figure 7. Sensitivity indices for yearly corn yield for treatment 7.
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Figure 8. Sensitivity indices based on model prediction or likelihood weight for corn yield for the five treatments.
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Table 6. FAST sensitivity indices for SOC.

Parameter FBM FHP PARM(20)

Based on model output (before comparing to observed values)
First order 0.0018 0.6004 0.3714
Total order 0.0117 0.6243 0.3937
Increase 0.0098 0.0239 0.0223

Based on likelihood measure (after comparing to observed values)
First order 0.0103 0.0657 0.0911
Total order 0.5955 0.8348 0.8547
Increase 0.5853 0.7692 0.7636

(HI). Correspondingly, microbial decay rate coefficient
(PARM(20)) and fraction of humus in passive pool (FHP) are
critical parameters for SOC component. Since the study site
had initial soil water content measurements of layers at wilt-
ing point and field capacity, those values were used. The val-
ues of the remaining five parameters were identified as 35.4
kg ha™ MJ~1 m2 for WA, 0.48 for HI, 1645°C for PHU, 0.86
for FHP, and 0.13 for PARM(20) based on the optimal value
of the aggregated objective function (eq. 9) through the auto-
matic parameter optimization search.

A WA of 35.4 kg ha™! MJ~1 m2 is similar to the values of
32 to 34 kg ha™! MJ~1 m2 for corn summarized by Sinclair
and Muchow (1999). An HI of 0.48 is close to the values
reported in many agronomic trials (Kiniry et al., 1997). A
PHU of 1645°C is close to the value of 1640°C calculated
using the 34-year average heat unit accumulation at the study
site during the normal growing season, which was deter-

mined from May 11 to October 16 by averaging the 34 years
of planting and harvest dates. An FHP of 0.86 is larger than
values reported in the literature for non-hydrolyzable C,
which is the extractable pool most closely associated to the
passive soil organic carbon pool (Paul et al., 1997). A value
of 0.13 determined for the microbial decay rate coefficient,
PARM(20), was close to the mean of the triangular distribu-
tion used to parameterize the model runs. Low PARM(20)
values slow down the potential transformations of the various
carbon pools (i.e., structural and metabolic litter, microbial
biomass, slow and passive humus).

The parameter set gives an R2 of 0.96 with a slope of 1.1
for the average corn yield prediction and a R? of 0.89 with a
slope of 1.3 for the yearly SOC prediction (fig. 10). The
positive slopes were significantly different from zero at the
95% confidence level. Overall, the model was accurate in
predicting the average annual yields and yearly SOC.

The errors for average corn yields ranged from —8.5% to
8.2% (table 7 and fig. 11). The close agreement in mean and
standard deviation indicates the similarity in observed and
predicted yield probability distribution. This is consistent
with the finding in Williams et al. (1989) and is useful in
decision making when based on model output. The errors for
yearly SOC ranged from —8.3% to 2.4% (table 8 and fig. 12).
This indicates that the model is reasonably acceptable for
SOC prediction. However, it failed to simulate the SOC
increase from the initial year for the control treatment and
underestimated SOC for the treatment in both 1984 and 1990.
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Figure 9. Sensitivity indices based on model prediction or likelihood measure of SOC for the five treatments.
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As reasoned in the uncertainty analysis above, the model
might underestimate the C return from corn residues. The
model captured the effect of fertilizer inputs on SOC dynam-
ics in that SOC increased significantly from the initial year
1958 to 1984 for all N treatments. On average, the observed
SOC for the N treatments increased 970 g C m2 from 1958
to 1984, with an average C sequestration rate of 35.9 g C m=2
year~1; an increase of only 235 g C m=2 was observed for the
control treatment for the same period of time, with an average
C sequestration rate of 8.7 g C m=2 year~1. On average, the

predicted SOC for the N treatments increased 933 g C m=2
from 1958 to 1984, with an average C sequestration rate of
34.5 g C m=2 year~! (table 8). The average predicted error of
C sequestration rate during 1958-1984 for the N treatments
was —4%. The observed SOC decreased from 1984 to 1990
for all treatments except for treatment 7. As reasoned in the
uncertainty analysis above, observation error is a possibility
for treatment 7. The decrease of SOC can be attributed to the
effect of reduced N fertilization for the N treatments. The
model captured this decrease for the 1984 to 1990 period, too.

Table 7. Means and standard deviations of observed and predicted corn yield (1958-1991) from the optimal run.

Observed Corn Yield

Predicted Corn Yield

Mean SD cv Range Mean SD Ccv Range Error
Treatment (Mgha?)  (Mgha™) (%) (Mg ha%) (Mgha)  (Mgha™) (%) (Mg ha%) (%)

1 3.28 1.05 31.9 1.35-6.42 3.00 1.03 34.2 1.04 - 5.63 -8.5
3 5.54 111 20.0 3.13-761 5.41 1.34 24.8 2.84 -8.96 -2.4
5 5.85 1.26 215 3.46 - 7.61 6.33 1.47 23.2 2.88 - 9.06 8.2
7 6.17 1.42 23.0 3.13-8.96 5.90 1.23 20.9 2.88-8.96 -4.4
9 6.40 1.45 22.6 3.46 - 10.22 6.36 1.50 23.6 2.87-9.47 -0.6
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Figure 11. Measured vs. predicted average annual corn yields over 1958-1990 for the five treatments with standard error bars.

Table 8. Measured and predicted SOC of the optimal run

SOC (g C m2) Average Annual Rate of C Change (g C m~2 year™1)
Year Measured Predicted Error (%) 1958 to 1984 1984 to 1990
Treatment 1958 (initial) 5527.2 Measured Predicted Measured  Predicted
1 1984 5762.4 5303.1 -8.0 8.7 -8.3 -16.8 -18.2
1990 5644.8 5175.7 -8.3
3 1984 6468.0 6418.3 -0.8 34.9 33.0 -46.2 -36.0
1990 6144.6 6166.2 0.4
5 1984 6526.8 6477.4 -0.8 37.0 35.2 -4.2 -0.2
1990 6497.4 6476.0 -0.3
7 1984 6468.0 6458.4 -0.1 34.9 345 37.8 -5.2
1990 6732.6 6422.0 -4.6
9 1984 6526.8 6477.4 -0.8 37.0 35.2 -29.4 -0.3
1990 6321.0 6475.2 24
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Figure 12. Measured vs. predicted SOC for the five treatments.
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CONCLUSIONS

Uncertainty and sensitivity analyses were performed for
corn yields and SOC dynamics simulated with the EPIC
model using data from the Arlington Agricultural Research
Station in Wisconsin. The GLUE procedure was used to
obtain output probability distribution functions and confi-
dence limits based on likelihood weights. The uncertainty
estimations were only based on six crop-related parameters
and three SOC-related parameters; other error sources were
not examined in this study. Results show that the observed
average corn yields fell well within the 5% and 95%
confidence limits for all treatments, suggesting that EPIC
was dependable and accurate, from a statistical point of view,
in predicting average annual corn yield. The observed yearly
SOC fell within the confidence limits ,except for the control
treatment and treatment 7 in 1990, with mean errors ranging
from —9.3% to 3.3%. The results also revealed possible error
sources, such as error in observations and model structural
error in underestimating the return of corn residues.

The GLUE procedure allows the performance of sensitiv-
ity analysis based on likelihood weights. When the FAST
sensitivity analysis was based on model prediction alone, it
only identified the individual influence of available soil
water capacity (DIFFW), potential heat units (PHU), bio-
mass-energy ratio (WA), and harvest index (HI) for the crop
growth component, and microbial decay rate coefficient
(PARM(20)) and fraction of humus in passive pool (FHP) for
the SOC component. Few interactions among parameters
were revealed. However, when the sensitivity analysis was
based on likelihood weights, it revealed more interaction
influence, meaning that good results are not driven by a
particular parameter but by a set of interactive parameters.

An automatic parameter optimization procedure was
developed in this study, which identified the optimal
parameter set for the most influential and uncertain parame-
ters for the study site based on a multi-objective function
value. The model did a good job in predicting corn yield and
SOC using the optimal parameter set, with R2 of 0.96 for
average annual corn yield predictions and 0.89 for yearly
SOC.

The study demonstrated a widely applicable procedure of
combining the GLUE procedure and a variance-based
sensitivity analysis technique with an agronomic model for
evaluating the prediction uncertainty associated with uncer-
tain parameters, together with an automatic parameter
optimization procedure on the basis of sensitivity analysis
and the use of a multi-objective function. The procedure is
efficient in that the use of a likelihood weight allows
conditioning model output to observations, without changing
the sample and without making further model runs. By
applying the same set of model runs, prediction uncertainty
was estimated and sensitivity indices were calculated, too.
Modelers or policymakers can use the procedure for any
deterministic models of their interest. Because of the use of
likelihood weight in the procedure, potential model users
may apply the parameter ranges proposed in this study to
different soils and climate if data are not available. The
limitation of the procedure is that the uncertainties in model
structure and observations were not examined. This should
be the focus of future study. For example, by comparing EPIC
with other models using the same procedure and observa-
tions, the uncertainties in the model structure can be
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explored. Opportunity also exists for improvement in the
procedure to include a parameter screening step to identify
the key parameters for the further uncertainty and more
complex sensitivity analyses.
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